Synway Information Engineering Co., Ltd

www.synway.net
Contents

Contents ... i
Copyright Declaration .. ii
Revision History .. iii
Chapter 1 Overview ... 1
 1.1 Functions .. 1
 1.2 Features ... 2
 1.3 Operation Principle ... 4
Chapter 2 Installation .. 5
 2.1 Hardware Structure ... 5
 2.2 System Requirements .. 6
 2.3 Installation Procedure ... 6
Appendix A Technical Specifications ... 10
Appendix B Technical/sales Support .. 11
Copyright Declaration

All rights reserved; no part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, without prior written permission from Synway Information Engineering Co., Ltd (hereinafter referred to as 'Synway').

Synway reserves all rights to modify this document without prior notice. Please contact Synway for the latest version of this document before placing an order.

Synway has made every effort to ensure the accuracy of this document but does not guarantee the absence of errors. Moreover, Synway assumes no responsibility in obtaining permission and authorization of any third party patent, copyright or product involved in relation to the use of this document.
Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 1.0</td>
<td>2011.12</td>
<td>Initial publication</td>
</tr>
</tbody>
</table>

Note: Please visit our website http://www.synway.net to obtain the latest version of this document.
Chapter 1 Overview

The 240-channel E-type digital voice-alteration board is a digital trunk voice board with PCIe bus, and has almost all functions needed for call/voice processing systems which are connected to it through E1/T1/J1 trunk. This board is designed with the voice-alteration function and the DMA Read and Write function which speeds up the data transfer and minimizes the cost of CPU, further improving the system performance.

1.1 Functions

- Supports super voice alteration: as many as 150 voice alteration effects available for your choice
- All voice-alteration channels are independent to one another: each can be set separately with voice-alteration effects
- A single board accommodates 8 E1/T1/J1 trunks
- Supports China SS1, SS7 and ISDN connections in E1/T1 mode
- Supports phone calling and voice processing
- Activity/silence detection
- Automatic Gain Control (AGC) support in recording operation
- Allows DTMF transmission and detection during voice recording or playback
- Includes H.100 bus, compatible with MVIP, SC and ST buses, facilitating smooth connectivity to third-party boards with H.100 bus for the transfer of acquired voice signals to other devices
- The flexible distributed conferencing system sets no limit on the number of simultaneous conferences and participants in each conference, allows monitoring and recording of the whole conference and each individual speaker
- The on-board lightning-proof circuit reaches the telecom standard and surely eliminates the damage caused by lightning
- Equipped with the EMI circuit, effectively preventing the electromagnetic interference
- Each board has a unique hardware serial number written in the firmware to distinguish itself from other boards and prevent piracy. The number is available via an easy function call with applications
- The on-board authorization code identification circuit is designed for software safety. Users can apply to our company for the authorization code
• Compatible with other series of voice boards from Synway

1.2 Features

• Large Capacity and High Density
 As many as 240 voice channels are supported involving up to 120 voice-alteration channels configurable on a single board, providing technological base for the construction of super mass capacity platform.

• DSP Array & Low System Cost
 The core algorithm of voice-alteration is realized by the DSP arrays without occupying system resources, ensuring better stability and reliability.

• PCIe Bus Support
 Includes PCIe 1.0a bus and PCIe x1 interface, applicable to various PCIe slots; supports the PNP (plug and play) feature.

• DMA Read and Write
 Uses the DMA technology based on PCI bus to read and write data, greatly reducing the CPU cost.

• E1/T1/J1 Support
 Provides an easy selection of the E1, T1 or J1 trunk and its matching impedance via software reconfiguration, not requiring any change in the hardware.

• Signaling Interface
 SS1 provides two levels of interfaces respectively for MFC transmission/receipt and SS1 connection; SS7 provides two levels of interfaces respectively for MTP and TUP/ISUP, meeting various customer requirements.

• Signaling Processing
 Installed with loadable signaling processing modules, each board supports SS1, SS7 and ISDN, eliminating the need for extra signaling boards. The signaling processing program can be upgraded via a simple software configuration, without having to change the hardware.

• Signaling Links
 Each board supports up to 8 signaling links and the signaling hot-backup feature, i.e. the signaling can be processed by the standby server whenever something is wrong with the links being used, which increases the flexibility and reliability in a great extent. All the timeslots ranging from 1 to 31, not only TS16, can be used for SS7 and ISDN signalings.

• Programmable Tone Detector
Detects single or dual tones at any frequency, offering facility for use with a variety of PBXes and key telephone systems.

- **Software-based Terminal Matching**
 A single board supports several kinds of trunks which differ in impedance. They are 100Ω T1, 110Ω J1 and 120Ω E1 twisted-pair cables and 75Ω E1 coaxial cable. Both transmit and receive terminals on the board are specified via software configurations, facilitating easy connections to a variety of digital trunks and optical transceivers.

- **Specialized Driver Algorithm**
 The driver uses SPECDial - a specialized driver algorithm - to perform a complete automatic dial process through digital trunks and to accurately identify the called-party status.

- **Echo Cancellation**
 The self-adaptive echo cancellation feature effectively eliminates echoes under various conditions, which cancels out the effect of voice playback on DTMF and busy tone detection, avoids self-excited oscillation and howling, and minimizes the possibility of registering wrong DTMF and busy tones in a conference call.

- **Barge in**
 Supports the Barge-in feature.

- **Various CODECs Support**
 Offers a large selection of voice CODECs, including hardware-based A-Law (G.711), µ-Law, IMA ADPCM and software-based 16-bit linear PCM, MP3.

- **Supports WAV File**
 The recorded voice files can be edited and played by audio tools such as Cooledit.

- **Synway's Unified SynCTI Driver Development Platform**
 Synway owns the intellectual property rights for the unified high-intelligence SynCTI driver development platform. Each system supports up to 2048 channels. The complex call procedures can be analyzed and controlled through simple function calls on the driver platform, without having to understand details.
1.3 Operation Principle

Figure 1-1 Operation Principle
Chapter 2 Installation

2.1 Hardware Structure

- SHD-240E-CT/PCle/VAR Board

![Figure 2-1 Left and Front Views](image1)

Notes:
1. In Figure 2-1, PCM1 ~ PCM8 indicate 8 trunk interfaces while LED1 ~ LED8 represent their synchronization indicators;
2. INm and OUTm refer to the grounding jumpers respectively at the receiving and transmitting ends for PCM(m), m = 1 ~ 8.

![Figure 2-2 Rear View](image2)

Notes:
1. Here above illustrates the hardware structure of SHD-240E-CT/PCle/VAR Digital Voice-alteration Board. Always check the label on the back of a board to get the exact board model.
2. See Table 2-1 below for detailed information about the synchronization indicators of on-board trunk interfaces mentioned above.

<table>
<thead>
<tr>
<th>LED</th>
<th>Lamp Status</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Lamps</td>
<td>ON</td>
<td>synchronous</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>asynchronous</td>
</tr>
<tr>
<td></td>
<td>Flash</td>
<td>synchronous but unsteady</td>
</tr>
</tbody>
</table>

Table 2-1 On-board Synchronization Indicators

3. Interfaces on this board are all RJ48C connectors. Users may convert them into BNC connectors by using the RJ48C-to-BNC adapter supplied with the board. Trunks and physical interfaces of the digital voice-alteration board are all listed below.

<table>
<thead>
<tr>
<th>No.</th>
<th>Model</th>
<th>Trunk</th>
<th>Physical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SHD-240E-CT/PCle/VAR</td>
<td>8E1/T1/J1</td>
<td>4 Special RJ48C</td>
</tr>
</tbody>
</table>

Table 2-2 Trunks and Interfaces

2.2 System Requirements

Host System Requirements

- CPU: 300MHz Intel® Pentium® II or above
- Memory: 256M or more
- HD: Depends on individual requirements

Supported Operating Systems

Refer to *SynCTI Programmer’s Manual.pdf.*

2.3 Installation Procedure

Step 1: Configure the grounding jumpers.

Disconnect all grounding jumpers for use of the 100ΩT1, 110ΩJ1 or 120Ω E1 balanced twisted-pair cable.

In consideration of various line conditions, the digital voice-alteration board is equipped with two groups of grounding jumpers on each channel which respectively control the groundings of the transmitting and receiving ends. In case the 75Ω E1 unbalanced coaxial cable is used, the grounding jumpers at the receiving end should be disconnected while those at the transmitting end should be short-circuited, provided that the PC is properly grounded. This configuration is the factory default setting and applicable to most situations so that there is usually no need to change it. If it is difficult to ground the local PC, you may short-circuit the on-board grounding jumper at the receiving end and use the transmitting end at the opposite terminal for grounding. If the receiving end at the opposite terminal is grounded (improper operation), the on-board grounding...
jumper at the transmitting end must be disconnected. Refer to Table 2-3 for details.

Generally speaking, even in the case of proper grounding at both terminals, only the external layer of the E1 coaxial cable at the transmitting end is allowed to be grounded. The grounding of both transmitting and receiving ends may result in a current loop with ground wires, bringing instability to signals. Therefore, such grounding must be strictly avoided.

<table>
<thead>
<tr>
<th>Opposite Terminal</th>
<th>Transmit End</th>
<th>grounded</th>
<th>grounded</th>
<th>non-grounded</th>
<th>non-grounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Terminal</td>
<td>Receive End</td>
<td>non-grounded</td>
<td>grounded</td>
<td>non-grounded</td>
<td>grounded</td>
</tr>
<tr>
<td>PC grounded</td>
<td>Transmit End</td>
<td>short-circuited</td>
<td>disconnected</td>
<td>short-circuited</td>
<td>disconnected</td>
</tr>
<tr>
<td></td>
<td>Receive End</td>
<td>disconnected</td>
<td>disconnected</td>
<td>short-circuited</td>
<td>short-circuited</td>
</tr>
<tr>
<td>PC not grounded</td>
<td>Transmit End</td>
<td>short-circuited</td>
<td>short-circuited</td>
<td>manage to make the PC grounded</td>
<td>short-circuited</td>
</tr>
<tr>
<td></td>
<td>Receive End</td>
<td>short-circuited</td>
<td>disconnected</td>
<td>grounded</td>
<td>short-circuited</td>
</tr>
</tbody>
</table>

Table 2-3 Configuration of Grounding Jumpers for Use of 75ΩE1 Unbalanced Coaxial Cable

Step 2: Properly fit the digital voice-alteration board into the PCIe slot on the PC chassis.

Step 3: Connect to digital trunks.

This digital voice-alteration board provides special RJ48C connectors whose pin layout is unfolded below in Figure 2-3.

When you connect this board to a digital trunk, it is necessary to convert each special RJ48C connector into 2 common RJ48C connectors. Use the 2-way hub for RJ48C to perform the conversions as shown in Figure 2-4: connect the 1st, 2nd, 4th, 5th pins of the special 8-pin RJ48C connector to the 1st, 2nd, 4th, 5th pins of the first common RJ48C connector, and the 3rd, 6th, 7th, 8th pins to the 1st, 2nd, 4th, 5th pins of the second common RJ48C connector. You are allowed to construct lines for conversion by yourself, but must follow the order in pin connection as specified above.
When connecting the board to a digital trunk with BNC interface, use the 2-way Hub for RJ48C as shown in Figure 2-4 to convert a special RJ48C connector to two common RJ48C before using the RJ48C-to-BNC adapter as shown in Figure 2-5.

If you would like to construct lines for conversion by yourself, you should not only make the line match the on-board interface, but also ensure the correct connection of receive and transmit lines as shown in Figure 2-3.

Notes:

1) Prevent the cross connection of transmit and receive lines. Such mistake can be found out by observing the on-board synchronization indicators. If the indicator is on, that means the receive line is in a normal state; if the indicator is off or flashing, that means the receive line goes abnormal (probably due to the cross connection). However, the state of transmit lines can not be checked via synchronization indicators but should be examined by the opposite terminal.

2) On-board synchronization indicators start working only after the PC is powered on and the board is successfully initialized.

Step 4: Connect H.100 bus interfaces on all boards by bus cable.

Skip this step if there is no need for bus exchange between multiple boards.

Notes:

1) See Figure 2-6 for correct insertion. Do not twist or insert in the opposite direction.
2) There are two clock settings for voice boards: When between-board bus exchange is not required, each board sets its own clock and may not be connected to the bus cable; otherwise, each board must be connected to the bus cable to follow the clock of the cable.

3) The bus cable houses a stiff conducting material. Therefore, when it has been shaped, do not bend it repeatedly or violently lest it is broken.

Step 5: Boot your computer and install the driver.

Regarding driver installation, refer to SynCTI_InstManual.pdf.

Step 6: Configure parameters for the digital voice-alteration board.

Refer to SynCTI Programmer’s Manual for details.

Key Tips:

- As the system is expected to run for long hours unmannedly, ‘energy-saving’ mode should be turned off for both the CPU and the HD in CMOS or WINDOWS operating system. This is to ensure full-speed operation of the computer, or it may lead to a drop in performance or unexpected errors after running for some time.

- A chassis installed with voice boards must be grounded for safety reasons, according to standard industry requirements. A simple way is earthing with the third pin on the plug. No or improper grounding may cause instability in operation as well as decrease in lightning resistance.
Appendix A Technical Specifications

Dimensions

- 310×115mm² (excluding L-bracket)

Weight

- ≈150g

Environment

- Operating temperature: 0 °C—55 °C
- Storage temperature: -20 °C—85 °C
- Humidity: 8%—90% non-condensing
- Storage humidity: 8%—90% non-condensing

Input/output Interface

- E1 physical ports: Compliant with G.703, including
 - 75Ω unbalanced interface and 120Ω balanced interface
- T1/J1 physical ports: DSX-1 and CSU line
 - build-outs available for different extents of signal losses, including
 - 100Ω and 110Ω balanced interfaces

Audio Specifications

- CODEC: CCITT A/µ-Law 64kbps
- Distortion: ≤3%
- Frequency response: 300-3400Hz (±3dB)
- Signal-to-noise ratio: ≥38dB
- Echo suppression: ≥40dB

Maximum System Capacity

- Up to 8 digital trunk boards concurrently per system; up to 240 channels per board

Adjustment Range

- 70 - 220, the original voice is 128

Adjustment Step Value

- 1

Voice Delay

- 15ms - 24ms

Power Requirements

- Maximum power consumption: ≤10W

Signaling

- SS1: Compliant with DL and MFC standards stipulated in GF002-9002; supports D4 and ESF framing
- SS7: compliant with Q771-Q795
- DSS1: compliant with Q.933

Audio Encoding & Decoding

<table>
<thead>
<tr>
<th>CODEC</th>
<th>Bitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>16Bit PCM</td>
<td>128kbps</td>
</tr>
<tr>
<td>8Bit PCM</td>
<td>64kbps</td>
</tr>
<tr>
<td>A-Law</td>
<td>64kbps</td>
</tr>
<tr>
<td>µ-Law</td>
<td>64kbps</td>
</tr>
<tr>
<td>IMA ADPCM</td>
<td>32kbps</td>
</tr>
<tr>
<td>GSM</td>
<td>13.6kbps</td>
</tr>
<tr>
<td>MP3</td>
<td>8kbps</td>
</tr>
</tbody>
</table>

Safety

- Lightning Resistance: Level 4
Appendix B Technical/sales Support

Thank you for choosing Synway. Please contact us should you have any inquiry regarding our products. We shall do our best to help you.

Headquarters

Synway Information Engineering Co., Ltd

http://www.synway.net/

9F, Synway D&R Center, No.3756, Nanhuan Road, Binjiang District, Hangzhou, P.R.China, 310053

Tel: +86-571-88860561

Fax: +86-571-88850923

Technical Support

Tel: +86-571-88864579

Mobile: +86-18905817070

Email: techsupport@sanhuid.com

Email: techsupport@synway.net

MSN: synway.support@hotmail.com

Sales Department

Tel: +86-571-88860561

Tel: +86-571-88864579

Fax: +86-571-88850923

Email: sales@synway.net